85. Konstitutionsisomerie in Polykondensaten

Teil VI¹)

Synthese und Eigenschaften von völlig geordneten und ungeordneten Bipolyamiden aus cis-2,6-Dimethylpiperazin und 1,2,5-Thiadiazol-3,4-dicarbonyl-dichlorid

von Andreas Mühlebach²)* und Piero Pino³)

Institut für Polymere, ETH-Zentrum, Universitätstrasse 6, CH-8092 Zürich

(8.III.90)

Constitutional Isomerism in Polycondensates. Synthesis and Properties of Perfectly Regular and Random Bipolyamides from *cis*-2,6-Dimethylpiperazine and 1,2,5-Thiadiazole-3,4-dicarbonyl Dichloride

The synthesis of constitutionally perfectly regular and random alternating copolyamides from the 'symmetric' monomer 1,2,5-thiadiazol-3,4-dicarbonyl dichloride (4) and the 'non-symmetric' monomer *cis*-2,6-dimethylpiperazine (7) by solution and interfacial polycondensation methods is described. Their constitutional regularities (*s* values) were determined by high-resolution 13 C-NMR spectroscopy in CDCl₃ solutions. Ordered and random copolyamides were amorphous with T_g values of *ca*. 200°. However, the regular head/tail and the random copolyamides with low molecular weights could be partially crystallized by annealing and showed large differences in their melting points (54°). Beside other physical properties, the membrane properties of the copolyamides were carefully investigated. In H₂O desalination by reverse osmosis, no differences in salt rejections and permeabilities between constitutionally regular and random copolyamides showed considerably larger separation factors in the gas separation (methane/hydrogen) than the random noes.

1. Einleitung. – Wie in früheren Arbeiten dieser Serie gezeigt wurde [1] [3–5], ist die Variation der Konstitutionsregularität in Bipolykondensaten aus einem sog. 'symmetrischen' Monomeren⁴) Y-cc-Y und einem sog. 'unsymmetrischen' Monomeren X-ab-X (X, Y: funktionelle Gruppen) eine elegante Möglichkeit, Polymer-Eigenschaften zu verändern und dadurch Struktur-Eigenschaftsbeziehungen zu studieren. Eine sowohl theoretisch als auch praktisch sehr interessante Anwendung dieses Konzepts war die Benützung der Polykondensate unterschiedlicher Struktur-Regularität als Membran-Materialien für verschiedene Trennprobleme. Dadurch konnte erstmals der Einfluss der Struktur-Regularität auf die Trenneigenschaften (Permeabilität und Selektivität) von Membranen studiert werden.

¹) Teil V: [1].

²) Teil der Dissertation von A. M. [2]; gegenwärtige Adresse: Ciba-Geigy AG, Werk Marly, CH-1701 Fribourg.

³) Am 9. Juli 1989 verstorben.

⁴) Als 'symmetrisch' wird ein Monomeres bezeichnet, das eine zur Molekülachse senkrecht stehende zweizählige Drehachse besitzt (Abkürzung: Y-cc-Y). Fehlt diese Achse, so bezeichnet man das Monomere als 'unsymmetrisch' (Abkürzung: X-ab-X). Unsymmetrisch ist nicht mit asymmetrisch, d. h. chiral, zu verwechseln.

Angesichts der ausgezeichneten Salz/Wasser-Trenneigenschaften von Polyamid-Membranen aus *trans*-2,5-Dimethylpiperazin (1) und 1,2,5-Thiadiazol-3,4-dicarbonsäure (2) [6] wurde zunächst versucht, Polyamide aus dem ähnlichen aber unsymmetrischen Monomer 2,2,6,6-Tetramethylpiperazin (3) und 1,2,5-Thiadiazol-3,4-dicarbonyldichlorid (4) herzustellen. Sämtliche Polykondensationsexperimente führten jedoch nur zum Trimeren 5, d. h. das N(1)-Atom von 3 reagierte infolge starker sterischer Hinderung nicht. In der Folge wurde die N-Nucleophilie im strukturell ähnlichen aber monofunktionellen 2,2,6,6-Tetramethylpiperidin (6) untersucht [2]. Nach einigen Misserfolgen gelang es, in schlechten Ausbeuten Modellverbindungen, d. h. Diamide aus 6 und/oder Piperidin und 4 herzustellen, die sehr interessante Festkörper- und Lösungseigenschaften zeigten [7]. Das ursprüngliche Ziel, aus 3 und 4 Polyamide mit hohen Molekulargewichten herzustellen, wie sie für gute mechanische Eigenschaften unbedingt erforderlich sind, musste jedoch fallengelassen werden.

Als weitere einfache unsymmetrische Piperazin-Derivate kamen cis-2,6-Dimethylpiperazin (7) und 2,2-Dimethylpiperazin (8) in Frage. Wegen der leichteren Zugänglichkeit wurden für die folgenden Untersuchungen das bekannte 7 [8] als unsymmetrisches und 4 [9] als symmetrisches Monomer benützt, 7 ist auch käuflich (*EGA-Chemie*). Dagegen ist das Copolyamid aus 7 und 4 bisher noch nicht beschrieben. Man beachte, dass beide Monomere achiral sind, so dass Stereoisomerie in den gebildeten Copolyamiden vermieden wird.

2. Resultate und Diskussion. – 2.1. Allgemeines. Bei einer Einstufenreaktion unter kinetisch kontrollierten Bedingungen hängen die Art und das Ausmass der Konstitutionsregularität in Bipolykondensaten aus X-ab-X und Y-cc-Y vor allem vom Reaktivitätsunterschied der beiden funktionellen Gruppen X im unsymmetrischen Monomeren X-ab-X, der Art und Geschwindigkeit der Reaktantenzugabe sowie dem mittleren Polymerisationsgrad P_n ab, wie eine theoretische Analyse gezeigt hat [10]. Das Ausmass der Konstitutionsregularität wird durch den sog. 's-Wert' beschrieben, der die Wahrscheinlichkeit von zwei aufeinanderfolgenden unsymmetrischen Monomer-Einheiten angibt, entlang der Polymerkette in die gleiche Richtung zu zeigen (s. Gl. 1).

$$s = \frac{[accb]}{[acca] + [accb] + [bccb]}$$
(1)

Bei vollständig regulären Polymeren vom Typ $(abccbacc)_{n/2}$, (sog. 'Kopf-Kopf-Schwanz-Schwanz' (= KKSS)-Anordnung) gilt somit s = 0, bei vollständig regulären Polymeren vom Typ $(abcc)_n$ (sog. 'Kopf-Schwanz' (KS)-Anordnung) gilt s = 1 und bei ungeordneten Polymeren gilt s = 0,5.

Man kann zeigen [10], dass sich Polymere mit bevorzugter KS-Anordnung (d. h. s > 0.5) nur bei gegenseitiger Beeinflussung der beiden funktionellen Gruppen Y im symmetrischen Monomeren Y-cc-Y herstellen lassen, d.h. die Reaktivität der zweiten funktionellen Gruppe muss sich ändern, sobald die erste reagiert hat⁵). Messungen von Schmucki [11] der Aminolyse-Geschwindigkeiten der beiden Ester-Gruppen im Bis(4-nitrophenylester) von 2 zeigten zwar eine leichte Beeinflussung $(2,2 \times \text{kleinere 'inhärente'})$ Reaktivität der zweiten Gruppe nach Reaktion der ersten mit Decylamin), die aber nur zu einer geringen Bevorzugung der KS-Sequenzen im Copolyamid mit s-Werten um 0,65 führen würde [10]. Die dazu erforderliche sehr rasche Mischung der beiden Monomeren 7 und 4 wäre experimentell kaum zu realisieren, da Reaktionen zwischen sekundären Aminen und Acyl-chloriden sehr rasch verlaufen, meist diffusionskontrolliert sind. Zudem ist aus sterischen Gründen der Reaktivitätsunterschied zwischen N(1) und N(4) in 7 sehr gross, (ca. 10⁴) [12]. Beides bewirkt im Polykondensat eine überwiegende Zahl von KKSS-Sequenzen, d.h. tiefe s-Werte. Um reine KS-Polykondensate aus 4 und 7 zu synthetisjeren, muss deshalb das bisher benutzte Konzept einer einstufigen Polykondensation unter kinetisch kontrollierten Reaktionsbedingungen fallengelassen werden. Polykondensate mit reiner KKSS-Struktur wurden bei sehr langsamer Zugabe von 4 zu einer gut gerührten Lösung von 7 zwar angenähert erhalten⁶), doch gelang die Herstellung von reinen KKSS-Copolyamiden (s = 0) ebenfalls nur durch einen im folgenden beschriebenen stufenweisen Aufbau der Polymere.

2.2. Synthesekonzept. Das Synthesekonzept basiert auf der Polykondensation einer zuvor synthetisierten dimeren Einheit -cc-ab-(\rightarrow KS-Strukturen) bzw. auf der Copoly-kondensation einer trimeren Einheit -ba-cc-ab mit dem symmetrischen Monomeren -cc-(\rightarrow KKSS-Strukturen; Schema 1). Wichtig ist, dass die reaktivere Amino-Gruppe des unsymmetrischen Monomeren selektiv mit einer Schutzgruppe Q versehen wird, deren Abspaltung später vollständig und unter milden Bedingungen erfolgt. Die (tert-Butoxy)carbonyl(Boc)-Gruppe erfüllt diese Anforderungen.

Schema 1. Synthesekonzept für konstitutionell völlig geordnete KS- und KKSS- sowie ungeordnete Polykondensate. Q =Schutzgruppe. X, Y: funktionelle Gruppen (X = Amin, Y = Acyl-chlorid).

$$X-ab-X \xrightarrow{+Q} X-ab-X-Q \xrightarrow{+Y-cc-Y} Y-cc-ab-X-Q \xrightarrow{-Q} (-cc-ab-)_{n} KS-Struktur +Y-cc-Y Q-X-ba-cc-ab-X-Q \xrightarrow{-2Q} X-ba-cc-ab-X \xrightarrow{-2XY} (-cc-ba-cc-ab-)_{n} KSS-Struktur (-cc-ba-)$$

ungeordnete Struktur

⁵) Dabei muss für die irreversible N-Acylierungsreaktion ein statistischer Faktor von 2 berücksichtigt werden, d. h. eine Halbierung der Reaktivität des zweiten N-Atoms gegenüber dem ersten bedeutet gleiche Reaktivitäten.

⁶) Im Experiment wurden minimale s-Werte von 0,05 erreicht.

2.3. Reguläre KS-Polyamide (s = 1,0). Nach einer Methode von Moroder et al. [13] wurde zuerst durch Umsetzung von 7 mit Di(tert-butyl)-dicarbonat in Dioxan 9 hergestellt (Schema 2). Im ausschliesslich am N(4) Boc-geschützten, kristallinen Produkt liegen die beiden Me-Gruppen gemäss ¹H-NMR-Spektrum äquatorial (kleines δ für

Schema 2. Synthese von vollständig geordneten KS-Polyamiden (s = 1,0)

H-C(2) und H-C(6), d. h. axiale Lage). Die anschliessende Acylierung von 9 mit 4 an der H_2O/CH_2Cl_2 -Grenzfläche mit KOH als Protonenakzeptor lieferte die gewünschte Carbamoylsäure 10 in 23% Ausbeute. Trotz Überschuss an 4 liess sich die Entstehung grösserer Mengen des Diamids 13 nicht vermeiden; letzteres konnte jedoch leicht abgetrennt und zur Synthese des reinen KKSS-Polyamids verwendet werden (s. unten, *Schema 3*). Sterische Hinderung zwischen Thiadiazol-Ring und Me-Gruppen in 10 bewirken vermutlich die mittels ¹H-NMR-Daten festgelegte Konformationsumkehr des Piperazin-Rings (axiale Me-Gruppen) im Vergleich zu 9.

Die COOH-Gruppe von 10 wurde nach *Kovacs et al.* [14] durch Überführung in den kristallinen (Pentachlorophenyl)ester 11 aktiviert (der entsprechende (4-Nitrophenyl)ester liess sich nicht kristallisieren). Abspaltung der Boc-Schutzgruppe aus 11 (\rightarrow 12) und Polykondensation zu P1 erfolgte in einer Eintopfreaktion in CHCl₃ durch sukzessive Zugabe von CF₃COOH gefolgt von Et₃N bei Raumtemperatur.

Aus dem regulären Copolyamid P1 konnten keine genügend starken Filme für Membran-Separationen hergestellt werden, da das Molekulargewicht zu niedrig war. Durch nachträgliche Polykondensation (sog. 'Postpolykondensation') von P1 mit DCC und 1,8-Diazabicyclo[5.4.0]undcc-7-cn (DBU) als Base in konzentrierter DMSO-Lösung liess sich das Molekulargewicht unter Bildung von P2 wesentlich erhöhen. Konzentrierte Lösungen von P2 ergaben Filme, die hervorragende mechanische Eigenschaften aufwiesen.

2.4. Reguläres KKSS-Polyamid (s = 0,0). Ausgehend von 2 mol-equiv. 9 und 4 wurde an der CH₂Cl₂/H₂O-Grenzfläche mit NaOH als Base das Boc-geschützte Diamin 13 hergestellt (*Schema 3*; ¹H-NMR: axiale Me-Gruppen). Die Abspaltung der Schutzgrup-

pen von 13 unter Bildung von 14 erfolgte mit CF₃COOH in CHCl₃ bereits bei tiefer Temperatur. Das entsprechende Dihydrochlorid 15 liess sich im Gegensatz zu 14 leicht durch Umkristallisation reinigen. Die Polykondensation von 15 mit 4 erfolgte im 'Waring Blendor' bei 0° an einer CHCl₃/H₂O-Grenzfläche mit KOH als Base. Unter optimalen Reaktionsbedingungen liess sich reines KKSS-Polyamid P3 in guter Ausbeute und mit relativ hohem Molekulargewicht synthetisieren.

2.5. Irreguläre Polyamide (0,05 $\leq s \leq$ 0,46). Irreguläre Copolyamide wurden sowohl durch Lösungs- als auch durch Grenzflächenpolykondensation hergestellt (Schema 4). Die Lösungspolykondensation ($\rightarrow P$) lieferte jedoch stets kleinere Ausbeuten und tiefere

Schema 4. Synthese von ungeordneten Polyamiden

Molekulargewichte. Die *s*-Werte lagen zwischen 0,05 und 0,42, d. h. KKSS-Sequenzen waren infolge der sehr unterschiedlichen Reaktivitäten der beiden Aminogruppen in 7 stark bevorzugt. Dagegen ergab die Grenzflächenpolykondensation in CHCl₃/H₂O mit einem Überschuss an K₂CO₃ als Base nahezu irreguläre Copolyamide (s = 0,46) P4 mit hohen Molekulargewichten. Die *s*-Werte der irregulären Polyamide wurden durch quantitative ¹³C-NMR-Sepektroskopie in CDCl₃ bestimmt (s. *Fig. 1*).

Fig. 1. a) ¹³C-NMR-Spektren (Bereich 154–164 ppm) des geordneten Polyamids P1, b) des ungeordneten Polyamids P4 und c) des geordneten Polyamids P3. CDCl₃-Lösungen, Relaxations-'delay' $6 \cdot T_1$ (max.) = 18 s. Thiadiazol-C-Atome bei 155–159 ppm, Carbonyl-C-Atome bei 161–163 ppm.

Die Signalzuordnungen basieren auf zuvor hergestellten Modell-Verbindungen aus *cis*-2,6-Dimethylpiperidin und **4** [2] sowie auf einem Vergleich der chemischen Verschiebungen der aromatischen C-Atome in den vollständig geordneten Polyamiden: Während man für die reinen KKSS-Polyamide (*Fig. 1c*) für die Thiadiazol C-Atome nur ein Signal bei 157,1 ppm findet, zeigen dieselben Atome in den geordneten KS-Polyamiden im ¹³C-NMR Spektrum zwei Signale bei 155,8 und 157,1 ppm. Die ungeordneten oder teilweise geordneten Polyamide geben drei Signale (*Fig. 1b*), deren Intensitäten den KS- bzw. KKSS-Sequenzen proportional sind.

2.6. Charakterisierung. Tab. 1 gibt zunächst eine Übersicht über einige physikalische Eigenschaften der Polyamide. Die Polymere weisen Polymerisationsgrade P_n zwischen 35 und 190 abcc-Einheiten auf und sind im ungetemperten Zustand amorph mit T_g -Werten um 200°. Die hohen T_g -Werte sind auf die steife Natur der Polyamid-Ketten zurückzuführen. Die Tatsache, dass die T_g -Werte der geordneten und ungeordneten Polyamide nicht signifikant verschieden sind zeigt, dass die Glasübergangstemperaturen hauptsächlich ein Mass für die Flexibilitäten der Einzelketten sind und durch Änderungen der Konstitutionsregularitäten wenig beeinflusst werden.

Physikalische Grösse	P1	P2	P3	P4
s-Wert	1,00	1,00	0,00	0,46
$[\eta]$ (CHCl ₃ , 25°)	0,35	1,20	0,52	0,85
$M_{\rm n}^{\rm a}$)	8900	47000	24500	48000
P _n	35	186	97	190
M_{w}^{b}	21000	104000	52000	95000
$M_{\rm w}/M_{\rm n}$	$2,3 \pm 0,4$	$2,2 \pm 0,3$	$2,1 \pm 0,3$	$2,0 \pm 0,3$
$M_z^{\rm b}$)	26000	144000	_	_
Elementaranalyse				
ber. C 47,61	-	47,21	47,40	47,43
H 4,79	-	4,85	4,87	4,82
N 22,21		21,54	21,51	21,33
Glasübergang (T_{s}) [°]	198	200	203	195
Schmelzpunkt $(T_m [^\circ])$	332,5		-	278.5
Schmelzenthalpie $(\Delta H_m)^d$)	28,6	-	_	13,9
Löslichkeit: $V_{\rm E}/V_{\rm tot}^{\rm e}$)	0,64	0,63	0,50	0,58
Wasseraufnahme (Filme)				
50 h, 21°, 65% rel. H [%]		1,3	1,1	1,4
200 h, 21° in H ₂ O [%]	-	6,8	6,6	8,4

Tab. 1. Physikalische Eigenschaften der Polyamide P1-P4

^a) Dampfdruck (P1)- bzw. Membranosmose (P2, P3 und P4).

^b) Ultrazentrifugation (P1 und P2) bzw. Lichtstreuung (P3 und P4).

^c) Nach Temperung.

d) In kJ/mol abcc-Einheiten. Die Werte entsprechen einem hypothetischen 100% kristallinen Polymer.

^e) $V_{\rm F}$: Fällungsmittelvolumen; $V_{\rm tot.}$: Totalvolumen. Lösungsmittel: DMSO; Fällungsmittel: Aceton. Temperatur: 25°. $c_{\rm O} = 11$ mg/ml.

Selbst die konstitutionell völlig regulären Polyamide **P1–P3** kristallisieren spontan nicht. Dies liegt offenbar an der Schwierigkeit der steifen [(1,2,5-Thiadiazol-3,4-diyl)dicarbonyl(piperazin)]-Einheit, grössere zusammenhängende dreidimensional geordnete Bereiche auszubilden. Wird durch Tempern bei 230° (d. h. *ca.* 30° oberhalb von T_g) die Kettenbeweglichkeit über einen längeren Zeitraum (einige Tage) erhöht, so kristallisieren die Polymere mit niedrigen Molekulargewichten teilweise: **P1** zu *ca.* 22%, **P4** zu *ca.* 20%. Die unterschiedliche Konstitutionsregularität äussert sich in einer Schmelzpunktdifferenz von 54° zwischen dem reinen KS-Polyamid (s = 1,0) und dem irregulären Polyamid (s = 0,46). Weitere Unterschiede bestehen in der Löslichkeit und der Wasserdampfsorption von Filmen der Polyamide **P2**, **P3** und **P4**: das reguläre KKSS-Polyamid **P3** nimmt wie erwartet weniger H₂O auf und ist schlechter löslich als das irreguläre Polyamid **P4**. Erstaunlicherweise verhält sich das reguläre KS-Polyamid **P2** bezüglich H₂O-Aufnahme ähnlich wie das irreguläre Polyamid **P4**.

Tab. 2. Resultate der Umkehrosmose-Experimente an Filmen der Polypiperazinamide unterschiedlicher Konstitutionsregularität. Feed: 0,5% NaCl-Lösung, p = 41 bar, RT. P: Permeabilitätskonstante, RS: Rückhaltevermögen. PA: Polyamid aus 1 und 4.

Polyamid	s-Wert	$P \left[\operatorname{cm}^3 \cdot \operatorname{cm}/(\operatorname{cm}^2 \cdot \mathbf{s} \cdot \mathbf{Pa}) \right]$	<i>RS</i> _{max.} [%	
P2	1,00	$(1,29 \pm 0,18) \cdot 10^{-15}$	97.4 ± 1.1	
P3	0,00	$(1,61 \pm 0,19) \cdot 10^{-15}$	96.0 ± 1.2	
P4	0,46	$(1,37 \pm 0,14) \cdot 10^{-15}$	97,1 ± 1,2	
РА	_	$1,8 \cdot 10^{-15}$	<i>ca</i> . 98	

Tab. 2 zeigt die Membran-Eigenschaften der Polyamide bzgl. Wasserentsalzung durch Umkehrosmose. Die RS-Werte (Rückhaltevermögen) aller untersuchten Membranen liegen zwischen 96,0 und 97,4% (0,5% NaCl, $\Delta p = 41$ bar) und sind nicht signifikant verschieden. Deshalb können keine Aussagen über den Einfluss der Struktur-Regularität auf das Entsalzungsvermögen (Selektivität) und die Permeabilität von daraus hergestellten Membranen gemacht werden. Dazu sei folgendes bemerkt: Die beobachteten relativ grossen experimentellen Streuungen zwischen verschiedenen Membranen aus konstitutionell identischen Polymeren sind in der Membran-Trenntechnik leider die Regel. Es ist sehr schwierig, Membranen mit exakt reproduzierbaren Eigenschaften herzustellen, da kleinste Änderungen der physikalischen Bedingungen beim Giessvorgang (z.B. Luftfeuchtigkeit, Temperatur, Staub in der Giesslösung, Abdampfgeschwindigkeit des Lösungsmittels, etc.) stark die Membraneigenschaften beeinflussen [15] [16]. Zusätzlich ist schwierig abzuschätzen, inwieweit Membran-Defekte eine Rolle spielen könnten, wobei 'grössere' Löcher mit Sicherheit auszuschliessen sind, da alle Membranen vorgängig mit einem Dispersionsfarbstoff mit Partikeldurchmesser ca. 1 µm auf ihre Dichtigkeit überprüft wurden. 'Kleine' Löcher (im nm-Bereich) lassen den viskosen Fluss durch die Membran nicht wesentlich ansteigen, doch sinkt das Rückhaltevermögen beträchtlich [17]. Die verwendeten relativ grossen Membran-Dicken (in allen Fällen \ge 75 µm) schliessen jedoch durchgehende Poren im nm-Bereich nahezu aus. Zusammenfassend lässt sich sagen, dass sich die Strukturregularität wahrscheinlich auf die Membran-Eigenschaften auswirkt, der Effekt aber gegenüber anderen Einflüssen, die mit der Membran-Herstellung zusammenhängen, vernachlässigbar ist.

Grundsätzlich andere Verhältnisse liegen in der Gas-Trennung vor (s. Tab.3). Es wurden die Permeabilitäten von reinem H₂, CH₄ und einer (1:1)-Mischung H₂/CH₄ bestimmt sowie zusätzlich der 'reale' (d. h. gemessene) Trennfaktor der Mischung. H₂ und CH₄ wurden deshalb als Testsystem gewählt, da sich beide Gase bei RT. und mässigen Drücken beinahe ideal verhalten, wenig Wechselwirkung mit Polymeren zeigen, gut permeieren und durch die meisten bekannten Membranen sehr gut getrennt werden. Die regulären Polyamide **P2** und **P3** weisen höhere Selektivitäten, aber kleinere Permeabilitä-

Polyamid	Dicke [µm]	<i>P</i> (H ₂)	$P(CH_4)$	<i>P</i> (H ₂ /CH ₄ 1:1)	α
P2	51	$1,02 \cdot 10^{-17}$	ca. $1 \cdot 10^{-19}$	$2.1 \cdot 10^{-18}$	99
P3	94	$6,14 \cdot 10^{-18}$	ca. $2 \cdot 10^{-20}$	$1,2 \cdot 10^{-18}$	121
P4(1)	85	$2,49 \cdot 10^{-17}$	ca. $2 \cdot 10^{-19}$	$7,6 \cdot 10^{-18}$	59
P4(2)	129	$2,41 \cdot 10^{-17}$	ca. $1 \cdot 10^{-19}$	$10,2 \cdot 10^{-18}$	61
P4(3)	113	$2,75 \cdot 10^{-17}$	ca. $1 \cdot 10^{-19}$	$9,7 \cdot 10^{-18}$	62
P4 ^a)	109	$(2,6 \pm 0,2) \cdot 10^{-17}$	ca. $(1,3 \pm 0,6) \cdot 10^{-19}$	$(9,2 \pm 1,4) \cdot 10^{-18}$	61 ± 2
PA ^b)	29	$6,10 \cdot 10^{-17}$		$1,9 \cdot 10^{-17}$	_
PA ^c)	32	$3,43 \cdot 10^{-17}$	ca. $8 \cdot 10^{-19}$	$1,5 \cdot 10^{-17}$	30
a) Durc	hschnittswert				
b) Aus I	0% AcOH-L	ösung gegossen.			
c) Aus l	0% CHCl ₃ -L	ösung gegossen.			

Tab. 3. Resultate der Gas-Trennung (H_2/CH_4): Permeabilitätskonstanten P [$m_N^{3} \cdot m/(m^2 \cdot s \cdot Pa)$] und reale Trennfaktoren α einiger Membranen aus den drei konstitutionsisomeren Polyamiden P2–P4 sowie zum Vergleich des Polyamids PA aus 1 und 4

ten auf als das irreguläre Polyamid P4. Dies ist nach dem heute allgemein akzeptierten Lösungsdiffusionsmodell, das auf Graham [18] zurückgeht, plausibel: Die Permeabilität eines Gases durch eine Membran ist proportional seiner Löslichkeit und seiner Diffusionsgeschwindigkeit. Die Löslichkeit von H_2 und CH_4 dürfte zwischen den konstitutionell geordneten und ungeordneten Polyamiden nur wenig variieren, da alle untersuchten Polyamid-Membranen vollständig amorph sind und die gleiche streng alternierende Abfolge der Monomer-Einheiten 4 und 7 aufweisen. Die Diffusionskonstante dagegen, die sehr stark von der Grösse der diffundierenden Teilchen abhängt, wird vor allem für grössere Gas-Moleküle stark durch die Packungsdichte und die Segment-Beweglichkeit der Ketten beeinflusst, d. h. dem Ausmass und der Geschwindigkeit, mit der Hohlräume zwischen den Polymer-Ketten vorhanden sind bzw. gebildet werden, die Platzwechsel-Vorgänge der eingelagerten Gas-Moleküle erlauben. Da die Kettenbeweglichkeit zwischen den regulären und irregulären Polyamiden nur wenig variiert (praktisch identische T_{e} -Werte), könnte in diesem Fall die Packungsdichte der Ketten entscheidend sein: Filme des konstitutionell regulären Polyamids P3 zeigten höhere Dichten als Filme des irregulären Polyamids P4 (Tab.4). Im Falle von P2 ist der Unterschied zu P4 aber nicht

Tab. 4. Dichten von getrockneten Filmen der konstitutionsisomeren Polyamide P2-P4

Polyamid	P2	P3	P4
$\rho [g/cm^3]$	1,359 ± 0,005	$1,367 \pm 0,005$	$1,355 \pm 0,005$

signifikant. Es ist interessant festzustellen, dass die Permeabilitäten von P2-P4 zwar schlechter, die Selektivitäten jedoch besser sind als bei den Polyamid-Membranen aus PA. Diese Ergebnisse bestätigen erneut die empirische Regel, wonach Membranen mit hohen Selektivitäten schlechte Permeabilitäten und solche mit guten Permeabilitäten schlechte Selektivitäten besitzen.

Experimenteller Teil

1. Allgemeines. 1.1. Chemikalien und Lösungsmittel. Di(tert-butyl)-dicarbonat, Dicyclohexylcarbodiimid (DCC), 1,8-Diazabicyclo[5.4.0]undec-7-en (DBU) und Essigsäure (AcOH): Fluka-Produkte, ohne weitere Reinigung verwendet. 1,2,5-Thiadiazol-3,4-dicarbonyl-dichlorid (4): Geschenk von Dr. G. Gianotti (Istituto Donegani SpA, I-Novara). CF₃COOH, Et₃N, CHCl₃, CH₂Cl₂, DMSO und THF: Reinigung nach [19]. cis-2,6-Dimethylpiperazin (7): Synthese nach [8] aus 2-Aminopropanol, Raney-Ni, wässr. NH₃-Lsg. und H₂ im Autoklaven. Ausbeute 62%. Reinigung durch Überführung in $7 \cdot 2$ HCl, Umkristallisieren aus EtOH (95%), Neutralisation mit NaOH, CH₂Cl₂-Extraktion, Einengen und Azeotrop-Destillation in Toluol: beim Abkühlen farblose Plättchen mit Schmp. 115,5°.

1.2. Mess-Instrumente. Dünnschichtchromatographie (DC): Fertigplatten Kieselgel 60 F254 (Merck); Entwicklung: UV oder Besprühen mit 1% Ninhydrin-Lsg. in EtOH und Erhitzen. UV: Perkin-Elmer Lambda 9 UV/VIS/NIR, CH₂Cl₂, RT., 1-cm-Quarzküvetten von *Hellma* (*Suprasil*); λ_{max} in nm, ε in cm⁻¹ · m⁻¹. Schmp.: Mettler-DTA-Kalorimeter (System TA 3000). IR-Spektren: Perkin-Elmer-177- bzw. -983-Gitter-Spektrophotometer. ¹H- und ¹³C-NMR-Spektren: Bruker-WH-90- bzw. -AM-300-Spektrometer; ¹H-NMR: c = 6-12 mg/ml, ¹³C-NMR: $c \approx 50$ mg/ml; chem. Verschiebungen δ in ppm rel. zu TMS (= 0 ppm); Kopplungskonstanten J in Hz. Für die Konstitutionsanalyse der irregulären Polyamide wurden die T_1 -Werte der Thiadiazol-C-Atome vorgängig gemessen: 2,8 s (155,8 ppm), 3,0 s (157,1 ppm), 2,3 s (158,4 ppm) und 2,6 s (161,8 ppm). Die quantitativen Spektren wurden deshalb mit einem Relaxationsdelay von $6 \cdot T_1(\max) = 18$ s aufgenommen. MS: Hitachi Perkin-Elmer-RMU-6L; Angaben in m/z, in Klammern Intensitäten in % bzgl. des intensivsten Signals. Dampfdruck-Osmometrie (VPO): Corona Wescan 232, CHCl₃, 25°. Membran-Osmometrie (MO): Einteiliges Membran-Osmometer von Knauer; Membranen aus regenerierter Cellulose (Schleicher & Schüll), Porengrösse ca. 10 nm, CHCl₃, 25-28°. Ultrazentrifugation (UZ): anal. UZ von Beckmann (Modell E), Sedimentationsgleichgewichtsmessung in CH₂Cl₂, 25°. Lichtstreuung (LS): Sofica 42000 (Le Mesnil-Saint-Denis), CH₂Cl₂, 25°, unpolarisiertes Licht $\lambda = 546$ nm; Brechungsindex-Inkrement (dn/dc): Brice-Phoenix-Differential-Refraktometer. Röntgenweitwinkelbeugung: *Philips-PW1394/1395-* bzw. *Seifert-*Diffraktometer mit *MZ-III-*Goniometer; $CuK_{\alpha 1}$ -Strahlung mit $\lambda = 1,5406$ Å. Viskosimetrie: Desreux-Bischoff-Kapillarviskosimeter bei $25 \pm 0.1^{\circ}$; 4–6 Messpunkte mit c = 2-10 mg/ml auf $c \rightarrow 0$ extrapoliert. Dichtemessung: Flotationsmethode in CCl₄/CH₂Cl₂-Mischungen; s. Tab. 4.

1.3. Umkehrosmose-Messungen. Die Messungen von Permeabilität und Selektivität der Polyamid-Membranen wurden in einer selbstgebauten Umkehrosmose-Zelle nach *Fig. 2a* und 2*b* bei RT. (23°) vorgenommen. Die Zelle, bestehend aus rostfreiem Stahl (*V4A 316 L*), war auf einen Maximaldruck von 50 bar ausgelegt. Sie wurde bei einem 'Feed'-Druck (p_2) von 42 bar betrieben, der durch Aufpressen von N₂ erzeugt wurde. Die Anfang-'Feed'-Menge betrug stets 350 ml 0,5% NaCl-Lsg., was nach *Gl. 2* einem osmotischen Druck (π_2) von 4,22 bar entspricht.

$$\pi_2 = c_i \cdot R \cdot T \tag{2}$$

 π_2 osmot. Druck des 'Feeds'

 c_i

Konzentration der gelösten Ionen (0,172M)

R universelle Gaskonstante $(8,314 \text{ J/mol} \cdot \text{K})$ T absolute Temperatur (295 K)

Das Permeat enthielt maximal noch 0,025 % NaCl, somit war der osmotische Druck $\pi_1 \leq 0,21$ bar. Die osmotische Druckdifferenz $\Delta \pi = \pi_2 - \pi_1$ betrug 4,01 bar. Dagegen betrug die angelegte Druckdifferenz $\Delta p = p_2 - p_1$ (p_1 : mittlerer Umgebungsdruck (= 0,97 bar)) 41,03 bar. Die treibende Kraft der Umkehrosmose ($\Delta p - \Delta \pi$) war somit 37,02 bar oder $\approx 3,7 \cdot 10^6$ Pa.

Die untersuchten Membranen lagen auf Metall-Sinterplatten mit Porendurchmessern von ca. 7 µm (*Thyssen Edelstahl AG*, CH–9500 Wil) und mussten Mindestdurchmesser von 8,9 cm aufweisen (wirksame Membranfläche 47,78 cm²). Für die nur in kleinen Mengen zur Verfügung stehenden geordneten Polyamide wurde ein Metallzwischenring nach *Fig. 2c zw*ischen Zylinder und Grundplatte eingeschoben, wodurch auch kleinere Membranen (Mindestdurchmesser: 6,4 cm; wirksame Membranfläche: 21,24 cm²) untersucht werden konnten. Die ganze Apparatur und sämtliche Membranen wurden vorgängig mit dem Dispersionsfarbstoff *Sanogran Blau GL5* (*Sandoz AG*, CH–4002 Basel) auf ihre Dichtigkeit geprüft. Dieser durchdringt Löcher bis 1,0 µm Durchmesser und ist bei einer Anfangskonzentration von 1 g/l bis zur 1000fachen Verdünnung noch gut sichtbar. Der Messzylinder für das Permeat wurde mit *Para*-Film abgedeckt, um die Verdunstung möglichst klein zu halten. Alle 24 h wurden Menge und Salz-Konzentration des Permeats gemessen und daraus Fluss und Rückhaltevermögen (*RS*-Werte) bestimmt. Die totale Permeat-Menge erreichte im Maximum 25 ml, womit die Salz-Anreicherung im Feed < 7% war. Die maximal um 0,3 bar erhöhte Druckdifferenz ($\Delta \pi$) konnte somit gegenüber der Manometer-Ungenauigkeit ($\pm 0,5$ bar) in der Berechnung der treibenden Kraft ($\Delta p - \Delta \pi$) vernachlässigt werden. Dagegen wurde zur Bestimmung des Rückhaltevermögens die Konzentrationserhöhung im 'Feed' berücksichtigt. Da die Zelle mit einem sich *ca.* 2 mm oberhalb der Membran befindlichen Magnetrührer mit *ca.* 300 rpm gerührt wurde, konnte in

Fig. 2 a) Umkehrosmose-Zelle (Aufriss). (1) Messzylinder für Permeat; (2) Rührmotor; (3) Grundplatte; (4) Sammelkanäle für Permeat; (5) Metall-Sinterplatte; 6 Membran; 7 Thermostatisierung; (8) Magnetrührer, bewegl. aufgehängt; (9) 'Feed' (Salzlösung); (10 Metall-Zylinder; (1) N_2 -Flasche; (12) Deckplatte; (13) Unterlagsscheibe; (14) Schraubenmutter; (15) Druckablassventil; (16) Einfüllstutzen; (17) N2-Einlass; (18) Manometer; (19) bewegl. Kapillare; (20) Auslassventil; (21) Druckreduzierventil; (22) Haupthahn.

b) Grundplatte der RO-Zelle
(Grundriss). 1) Bereich des
Metall-Zylinders; 2) Bereich der
O-Ringe; 3) Schraubenlöcher;
(4) Sammelkanäle für Permeat;
(5) Permeat-Auslauf; (6) 'aktiver'
Membran-Bereich; 7) Membran-Bereich.

c) Einsatzring für kleine Membranen. (1) O-Ringe.

Anbetracht des kleinen Flusses die Konzentrationspolarisation vernachlässigt werden [20]. Man testete je drei unabhängig voneinander aber jeweils gleich hergestellte Membranen der drei konstitutionsisomeren Polyamide auf ihre Umkehrosmose-Eigenschaften, indem man Mittelwert und Streuung der Permeabilitätskonstanten P [cm³·cm/(cm·s·Pa)] sowie des scheinbaren Rückhaltevermögens RS [%] bestimmte. P- und RS-Werte wurden nach Gl. 3 und 4 berechnet.

$$P = V \cdot d/[F \cdot t \cdot (\Delta p - \Delta \pi)]$$
⁽³⁾

$$RS = [(C_{\text{Feed}} - C_{\text{Permcat}})/C_{\text{Feed}}] \cdot 100\%$$
(4)

V	Permeat-Volumen [cm ³]	Δp	angelegte Druckdifferenz [Pa]
d	Membran-Dicke [cm]	$\Delta \pi$	osmot. Druckdifferenz [Pa]
F	Membran-Fläche [cm ²]	$C_{\text{`Feed'}}$	Salzkonz. im 'Feed'
t	Zeit [s]	C_{Permeat}	Salzkonz. im Permeat

1.4. Messungen der Gas-Trennung. Die Messungen von Permeabilitäten und Selektivitäten der Polyamid-Membranen bezüglich einer H_2/CH_4 -Mischung 1:1 und der beiden Reingase wurden in einem selbstgebauten Modul aus V4-A-Stahl nach Fig.3 vorgenommen. Die Membranen mit Durchmessern von mind. 5,9 cm (wirksame Membranfläche: 19,63 cm²) wurden zugeschnitten, ihre Dicke mit der Mikrometerschraube gemessen und i. HV. bei 80° (p < 0,01 Torr) bis zur Gewichtskonstanz getrocknet. Das Fehlen der OH Bande im IR-Spektrum bestätigte die völlige Abwesenheit von H_2O . Danach legte man sie auf eine Sinter-Metallplatte mit Porendurchmes-

Fig. 3. Modul für Gas-Trennung. (1) Gas-Einspeisung (Druckgasfl.); (2) Druckreduzierventil; (3) geeichtes Manometer; (4) Gas-Auslass (zu Rotameter u. Bunsenbrenner); (5) Septum; (6) Probenentnahme-Anschluss; (7) Regelventil f. Retentatstrom; (8) Verschraubung; (9) Deckplatte; (10) pneumatische Wanne; (11) O-Ringe; (12) Grundplatte; (13) Metall-Sinterplatte; (14) Position des äusseren O-Rings auf der Grundplatte; (15) Membran; (16) 'aktiver' Membran-Bereich.

ser 7 µm (*Thyssen Edelstahl AG*, CH-9500 Wil). Der 'Feed'-Strom (\approx Retentat-Strom, da Permeat-Strom < 1% des 'Feed'-Stroms) betrug 260 ml/min bei 20-40 bar transmembraner Druckdifferenz und wurde nach Modul-Austritt abgefackelt. Nach [20] kann auch hier die Konzentrationspolarisation vernachlässigt werden. Das Permeat wurde in der pneumatischen Wanne über mit H₂ und CH₄ gesättigtem H₂O aufgefangen. Die Löslichkeit dieser beiden Gase ist gering (H₂: 1,91 cm³/100 g H₂O bei 25°; CH₄: 3,62 cm³/100 ml H₂O bei 20° [21]). Es wurde jeweils die Zeit gemessen, in der 1-5 ml permeierten und die Gasmenge hernach auf Normalbedingungen umgerechnet. Das reine H₂ und das H₂/CH₄-Mischgas wurde je bei 20, 30 und 40 bar gemessen, das reine CH₄ nur bei 40 bar (die Permeabilität aller Membranen war für CH₄ sehr gering). Die Betriebstemp. lag bei 23° (\pm 1°). Mit Hilfe des aktuellen Barometerstandes (*ca.* 30 Torr) und der Temp. (*ca.* 23°) berechnete man den Permeat-Fluss unter Normalbedingungen (0°/760 Torr: V_N^*) und berechnete nach *Gl.* 5 die Permeabilitätskonstante *P* [m_N³·m/(m²·s·Pa)].

$$P = V_{\rm N}^* \cdot d/({\rm F} \cdot \Delta p) \tag{5}$$

 $V_N^* =$ Permeat-Fluss bei Normalbedingungen $[m_N^{3/s}]$ $\Delta p =$ Druck-Differenz über der Membran [Pa];d = Membran-Dicke [m] $\Delta p = p_2 - p_1;$ F = Membran-Fläche $[m^2]$ $p_2 =$ angelegter Absolutdruck [Pa], $p_1 =$ Umgebungsdruck [Pa]

Aus den Permeabilitätskonstanten bei $\Delta p = 20$, 30 und 40 bar wurde jeweils der Mittelwert gebildet. Es gelang, drei Membranen aus dem stat. Polyamid **P4**, eine aus dem reinen KKSS-Polyamid **P3** und zwei aus Poly{{-[(*trans-2'*,5'-dimethylpiperazin-1'-yl)carbonyl]-1,2,5-thiadiazol}-3-carbonyl-4'-yl} (**PA**) zu testen. Die übrigen Membranen bekamen durch die hohe Druckbelastung im Laufe der Experimente plötzlich Risse und wurden unbrauchbar. Zur Ermittlung der Permeat-Zusammensetzung wurden mit einer gas-dichten Spritze (*Hamilton SGE, Kontron AG*, Zürich) je 0,5 ml des Permeats gaschromatographisch untersucht. Der GC wurde vorgängig mit verschiedenen H₂/CH₄-Gemischen geeicht (s. *Tab.5* und *Fig.4*). Der GC mit He als Trägergas (40 ml/min) war für CH₄ (Retentionszeit 108 s) viel empfindlicher als für H₂ (Retentionszeit 52 s, negatives Signal). Bei kleinen CH₄-Anteilen in H₂ ($\chi_{CH4} < 0,3$) waren aber die Signal-Flächen nahezu proportional der Zusammensetzung (*Fig.4*). Die Flächenverhältnisse der Signale waren auf *ca.* 5% reproduzierbar. *Gl.* 6 definiert den realen Trennfaktor α :

$$\alpha = [\chi_{p} \cdot (1 - \chi_{R})] / [\chi_{R} \cdot (1 - \chi_{p})]$$
(6)

χ: Molenbruch der leichter permeierenden Komponenten (H2), P (Index): Permeat, R (Index): Retentat

 $0,12 \\ 0,1 \\ 0,08 \\ 0,06 \\ 0,04 \\ 0,02 \\ 0 \\ 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ F_{CH_4}/F_{H_2}$

Fig. 4. *GC-Eichung*. Abszisse: Molenbruch \times_{CH_4} von CH₄; Ordinaten: beobachtete Signalflächen, links von Methan F_{CH_4} , rechts von Wasserstoff F_{H_2} .

Fig. 5. *GC-Eichung*. Abszisse: Verhältnis der beobachteten Signalflächen F_{CH4}/FH_2 ; Ordinate: wahres CH₄/H₂-Molenverhältnis χ_{CH4}/χ_{H2} .

Da der Permeat-Strom < 5% des 'Feed'-Stroms war (kleine Permeabilität der verwendeten Membranen) entspricht der Retentat-Strom bzgl. Menge und Zusammensetzung in guter Näherung dem 'Feed'-Strom⁷). Geht man zudem von einer (1:1)-Mischung von H₂ und CH₄ aus, so gilt *Gl.* 7:

$$\chi_{\rm R} = 1 - \chi_{\rm R} = 0.5 \tag{7}$$

Mit $\chi_p = \chi_{H_2}$ und $1 - \chi_p = 1 - \chi_{H_2} = \chi_{CH_4}$ vereinfacht sich Gl.6 zu Gl.8:

$$= \chi_{\rm p} / (1 - \chi_{\rm p}) = \chi_{\rm H_2} / \chi_{\rm CH_4}; 1/\alpha = \chi_{\rm CH_4} / \chi_{\rm H_2}$$
(8)

Aus den im Gaschromatographen beobachteten Signal-Flächen liess sich über die Eichkurve von Fig. 5 (Daten von Tab. 5) somit direkt $1/\alpha$ und daraus α bestimmen. Der ideale Trennfaktor α' ist dagegen das Verhältnis der Permeabilitäten von H₂ und CH₄ (Gl. 9):

$$\alpha' = P_{\rm H_2}/P_{\rm CH_4} \tag{9}$$

Da P_{CH4} sehr klein war und nur ungenau bestimmt werden konnte, wurde auf die Angabe von α' verzichtet.

x _{CH4}	$x_{\mathrm{CH}_4}/x_{\mathrm{H}_2}$	F _{CH4}	F _{H2}	$F_{\rm CH_4}/F_{\rm H_2}$
0,000	0,0	0,0	3,92	0,0
0,025	0,026	6,7	3,63	1,85
0,050	0,053	15,2	3,30	4,61
0,100	0,111	30,3	2,75	11,02
0,250	0,333	76,5	1,38	55,43
0,500	1,000	136,3	0,27	504,81
0,750	3,000	206,0	0,05	4120,00
1,000	∞	257,0	0,00	∞

Tab. 5. *GC-Eichung* ('range' 8, Schreiberempfindlichkeit 1–200 mV, je nach Analyse). x: Molenbrüche; *F*: beobachtete Signalflächen in cm²·mV.

2. Membran-Herstellung. Die zur Umkehrosmose und Gas-Trennung verwendeten Membranen wurden wie folgt hergestellt: 4% Lsgn. der Polymere in CHCl₃ wurden durch 2 Metall-Filternetze mit Porendurchmessern von 25 μm filtriert, mit Ultraschall von Luftblasen befreit und auf gereinigtes Quecksilber im Exsikkator gegossen. Nun liess man das Lsgm. bei RT. durch ein mit CaCl₂ gefülltes Glasrohr langsam verdunsten (über mehrere Wochen). Die Membranen mit Dicken von 75–101 μm wurden anschliessend i. HV. bei 50° getrocknet.

3. Monomer-Synthesen. (tert-Butyl)-cis-3,5-dimethylpiperazin-1-carboxylate (9). Zu einer Lsg. von 29,0 g (254,4 mmol) 7 in 750 ml Dioxan/H₂O 9:4 wurden bei 0° unter gutem Rühren langsam 55,5 g (254,4 mmol) Di(*tert*-butyl)-dicarbonat getropft. Nach Erwärmen auf RT. rührte man noch 1 h bei 20°, dampfte ein und destillierte bei 60°/0,05 Torr. Das Destillat wurde über CaH₂ getrocknet und erneut i. HV. destilliert (75°/0,2 Torr): 44,2 g (81 %). Schmp. 70,9°. DC (PrOH/konz. NH₃ 84:37): $R_{\rm f}$ 0,83. DC (Et₂O): $R_{\rm f}$ 0,56. IR (liq.): 3320, 2970, 2940, 2880, 2820, 1690. ¹H-NMR (CDCl₃): 1,06 (d, J = 6,3, 2 CH₃); 1,46 (s, (CH₃)₃C); 1,54 (br. s, NH); 2,31, 3,95 (je br. s, je 2 H, 2 CH₂); 2,78 (m, 2 H, CH). MS: 214 (12, M^+), 157 (6), 113 (19), 57 (54), 44 (40). Anal. ber. für C₁₁H₂₂N₂O₂ (214,31): C 61,65, H 10,35, N 13,07; gef.: C 61,58, H 10,35, N 12,84.

4- {cis-4-[(tert-*Butoxy*)*carbony*]²-2,6-*dimethylpiperazin*-1-*y*]²-1,2,5-*thiadiazo*l-3-*carbonsäure* (10). Zu einer Lsg. von 22,2 g (105,1 mmol) 4 in 80 ml CH₂Cl₂ wurde eine Lsg. von 18,79 g (87,68 mmol) 9 in 45 ml CH₂Cl₂ innert l h getropft. Die klare Mischung wurde in den *Waring-Blendor* transferiert, mit Eis (Kühlmantel) auf 0° abgekühlt und mit 10 000 rpm gerührt. Innerhalb 10 s wurden 105,1 ml (210,2 mmol) 2m KOH zugegeben und noch 30 min mit unveränderter Geschwindigkeit gerührt. Das Lsgm. wurde abgedampft, die basisch wässr. Lsg. 4 × mit je 100 ml Et₂O ausgeschüttelt, die org. Phase getrocknet (Na₂SO₄) und eingedampft: 16,3 g (33%) 13 (s. unten). Die wässr. Phase wurde mit 40% wässr. Zitronensäure-Lsg. auf pH 2–3 gebracht und 5 × mit je 100 ml CH₂Cl₂ ausgeschüttelt, die org. Phase getrocknet (MgSO₄) und eingedampft und das weisse Pulver aus EtOH (95%) umkristallisiert 7,3 g (22,5%) 10. Schmp. 217,4°. DC: *R*_f 0,48 (EtOH). IR (KBr): 3430, 3000, 2970, 2935, 2870, 1720 (C=O, COOH), 1695 (C=O, Urethan), 1630 (C=O, Amid). ¹H-NMR ((D₆)DMSO): 1,11, 1,26 (je *d*, J_{vic} = 6,8, je 3 H,

⁷) Dies wurde gaschromatographisch überprüft. Die Abweichungen waren kleiner als 1%.

CH₃); 1,42 (*s*, (CH₃)₃C); 2,80–3,15, 3,55, 3,73 (je br. *m*, tot. 4 H, 2 CH₂); 3,92, 4,64 (je br. *m*, je 1 H, 2 CH); 14,30 (br. *s*, mit D₂O austauschbar, COOH). MS: 370 (4, M^+), 326 (1), 57 (100). Anal. ber. für C₁₅H₂₂N₄O₅S (370,43): C 48,64, H 5,79, N 15,12; gef.: C 48,70, H 6,00, N 15.15.

(*Pentachlorophenyl*)-4- {cis-4-f (tert-butoxy)carbonyl]-2,6-dimethylpiperazin-1-yl}-1,2,5-thiadiazol-3-carboxylat (11). Zu einer Lsg. von 6,30 g (17,0 mmol) 10 in 170 ml CH₂Cl₂/THF 5:1 wurden unter N₂ 5,26 g (25,5 mmol) DCC gefolgt von 4,98 g (18,7 mmol) Pentachlorophenol gegeben. Man liess 14 h bei RT. rühren und filtrierte durch eine *G4*-Nutsche. Der Rückstand wurde mit wenig CH₂Cl₂ gewaschen, Filtrat und Waschlösung vereinigt und zuerst $3 \times$ mit total 250 ml 0,1M wässr. HCl, dann $3 \times$ mit total 300 ml 5% wässr. NaHCO₃-Lsg. gewaschen. Die org. Phase wurde erneut filtriert, getrocknet (MgSO₄) und eingedampft. Das weisse Pulver rührte man 1 h mit 100 ml AcOEt bei RT., filtrierte und dampfte das Filtrat vollständig ein. Umkristallisation aus CHCl₃/THF/AcOH 9:3:1 lieferte 5,40 g (51%) reines 11. Schmp. 196,5°. DC: *R*_f 0,80 (AcOEt), *R*_f 0,62 (Et₂O), *R*_f 0,08 (Et₂O/Hexan 1:1). IR (KBr): 2980, 2930, 2910, 2870, 2850, 1772 (C=O, Ester), 1679 (C=O, Urethan), 1635 (C=O, Amid). ¹H-NMR (CDCl₃): 1,29, 1,40 (je d, je 3 H, *J*_{vic} = 7,0, 2 CH); 1,48 (*s*, (CH₃)₃C); 3,10, 3,51 (je *m*, tot. 3 H, CH₂); 3,95 (br. *m*, 2 H, CH, CH₂); 4,81 (*m*, 1 H, CH). ¹³C-NMR (CDCl₃): 19,7, 20,8 (2 CH₃); 28,4 ((CH₃)₃C); 127,6 (arom. C(2), C(6)); 132,5 (arom. C(3), C(5)); 132,7 (arom. C(4)); 143,3 (*t*-BuOCO); 147,8 (COOAr); 155,1, 155,3 (Thiadiazol-C); 159,7 (arom. C(1)); 161,6 (CON). MS: 618 (12, *M*⁺), 352 (22), 296 (100), 265 (55), 223 (91), 142 (77). Anal. ber. für C₂₁H₂₁Cl₅N₄O₅S (618,75): C 40,76, H 3,42, N 9,05, Cl 28,65; gef.: C 41,09, H 3,50, N 8,98, Cl 28,29.

cis, cis-[Di(tert-butyl)]-3, 3', 5, 5'-tetramethyl-4, 4'-[(1,2,5-thiadiazol-3,4-diyl)dicarbonyl]bis[piperazin]-1,1'dicarboxylat (13). Eine Lsg. von 23,40 g (109,2 mmol) 9 und 4,80 g (120,1 mmol) NaOH in 400 ml H₂O wurde in den Waring-Blendor gegeben, mit Eis auf 0° abgekühlt (Kühlmantel) und mit 20000 rpm gerührt. Unter Kühlung gab man innert 30 s eine Lsg. von 11,52 g (54,6 mmol) 4 in 100 ml CH₂Cl₂ zu und rührte noch 30 min bei 10000 rpm. Darauf wurde die wässr. Phase 2 × mit 50 ml CH₂Cl₂ extrahiert, die org. Phase vereinigt und 3 × mit je 50 ml verd. HCl-Lsg. sowie 2 × mit je 50 ml Na₂CO₃-Lsg. gewaschen. Man trocknete die org. Phase (MgSO₄) und dampfte ein. Umkristallisation aus EtOH (95%) ergab 26,0 g (84%) 13. Schmp. 178,2°. DC: $R_{\rm f}$ 0,74 (Aceton/CH₂Cl₂ 1:1), $R_{\rm f}$ 0,70 (EtOH), $R_{\rm f}$ 0,26 (Et₂O). IR (KBr): 2980, 2935, 2870, 1698 (C=O, Urethan), 1640 (C=O, Amid). ¹H-NMR (CDCl₃): 1,38 (d, J_{vic} = 7,0, 4 CH₃); 1,49 (s, 2 (CH₃)₃C); 3,10 (br., 2 CH₂); 3,8–4,1 (br. s, 6 H, CH, CH₂); 4,70 (br. m, 2 H, CH). MS: 566 (17, M^+), 57 (100). Anal. ber. für C₂₆H₄₂N₄₂N₆O₆S (566,72): C 55,10, H 7,47, N 14,83; gef.: C 54,92, H 7,29, N 14,70.

cis,cis-3,3',5,5'-Tetramethyl-4,4'-[(1,2,5-thiadiazol-3,4-diyl)dicarbonyl]bis[piperazin]-1,1'-dium Dichloride (15). Zu einer Lsg. von 3,0 g (5,3 mmol) 13 wurden bei 0° langsam 15,1 g (132,5 mmol) CF₃COOH getropft. Nach 1 h Rühren bei RT. dampfte man bei max. 40°/100 Torr auf 50 ml ein und goss in 200 ml Na₂CO₃-Lsg. Die org. Phase wurde mit H₂O gewaschen, getrocknet (MgSO₄) und eingedampft. Das gelbrote Diamin 14 kristallisierte nicht, so dass durch Behandlung mit verd. HCl-Lsg. 15 hergestellt und aus MeOH/Et₂O 10:1 umkristallisiert wurde : 1,70 g (73%). Schmp. 267°. DC: R_{1} 0,55 (BuOH/AcOH/H₂O/Py 60:12:48:40). IR (KBr): 2950, 2780, 2680, 2580, 2540, 2310, 2190, 1640, 1590. ¹H-NMR ((D₆)DMSO): 1,44 (*d*, J_{vic} = 7,0, 4 CH₃); 3,07, 3,34 (je *m*, je 4 H, 4 CH₂); 4,29, 4,81 (je br. *m*, je 2 H, 4 CH); 9,96 (br. *s*, 4 H, 2 NH₂⁺). MS (von 14): 366 (5, *M*). Anal. ber. für C₁₆H₂₈Cl₂N₆O₂S (439,41): C 43,74, H 6,42, N 19,13; gef.: C 43,73, H 6,62, N 17,76.

4. Polykondensationen. Poly {{4-[(cis-2',6'-dimethylpiperazin-1'-yl)carbonyl]-1,2,5-thiadiazol}-3-carbonyl-4'yl (= Geordnetes Polyamid (s=1,0); P1). Zu 2,010 g (3,25 mmol) 11 unter Ar gab man mit einer Spritze 8,20 g (71,8 mmol) CF₃COOH in 10 ml CHCl₃ und rührte 60 min unter leichtem Erwärmen bis zur klaren farblosen Lsg. Nun wurden CHCl₃ und überschüssige CF₃COOH abgedampft und das gebildete (Pentachlorophenyl)-4- (cis-2,6dimethylpiperazin-1-yl)-1,2,5-thiadiazol-3-carboxylat-hydrotrifluoroacetat (12) bei 50 HV. 24 h getrocknet (Gewichtsbilanz: 2,5 mol CF₃COOH/1 mol 12). Nach Zugabe von 10 ml CHCl₃ rührte man die Suspension bei RT. und gab 1,265 g (12,5 mmol) Et₃N sehr langsam unter starkem Rühren zu, wobei die Lsg. schon nach kurzer Zeit klar wurde. Man liess 24 h bei RT. stehen und erhitzte dann 2 h zum Rückfluss. Die Lsg. wurde auf RT. abgekühlt und mit 50 ml CHCl₃ verdünnt. Nach Waschen der Polymerlsg, mit 5% wässr. Na₂CO₃-Lsg, und 0,1M HCl wurde die org. Phase getrocknet (MgSO₄), auf 5 ml eingedampft und P1 durch Eintropfen in 100 ml Hexan ausgefällt. Man filtrierte durch eine G4-Nutsche, wusch den Rückstand mehrmals mit Hexan und MeOH und trocknete das leicht gelbe Produkt 48 h bei 60 HV.: 0,76 g (93 %). DTA: $T_g = 198^\circ$, $T_{zers} = 405^\circ$ (beginnend, N₂). Viskosimetrie: $[\eta] = 0.35 \pm 0.01 \text{ dl/g}$ (CHCl₃), $K_{\text{H}} = 0.4 \pm 0.2$. UV: 273.9 ± 0.5 (9260 ± 400). IR (KBr): 2975, 2930, 2878, 16355, 16355, 16355, 16355, 16355, 16355, 16355, 16355, 16355, 16355, 16355, 1480, 1450, 1422, 1386, 1330, 1314, 1265, 1248, 1179, 1145, 1120, 1110, 1041, 980, 965, 931, 920, 880, 870, 840, 810, 781, 730. ¹H-NMR (CDCl₃, RT.): 1,46, 1,48, 1,52 (je m, tot. 6 H, CH₃); 3,21, 3,58 (je m, d schwach erkennbar, $J_{\text{gem}} = 12$, tot. 2 H, CH₂); 4,08 (m, 1 H), 4,49 u. 4,61 (je d, $J_{\text{gem}} = 12$, tot. 1 H, CH₂); 4,08 (m, 1 H), 4,85 u. 5,00 u. 5 (je m, tot. 1 H, CH). ¹H-NMR (CDCl₃, 60°): 1,46 (d, $J_{vic} = 6,1, 6$ H, CH₃). ¹³C-NMR (CDCl₃): 19,8, 20,8 (CH₃); 45,6 (CH); 46,4 (CH₂); 50,5 (CH, CH₂); 155,8, 158,3 (Thiadiazol-C); 161,6, 162,0 (C=O). VPO: $M_{\rm n} = 8900 \pm 800 \text{ g/mol}, A_2 = 9.8 \cdot 10^{-4} \text{ mol} \cdot \text{ml/g}^2$. UZ: $M_{\rm w} = 20800 \pm 2000 \text{ g/mol}$. Anal. ber. für C₁₀H₁₂N₄O₂S (252,30): C 47,61, H 4,79, N 22,21; gef.: C 49,02, H 5,15, N 20,86.

Postpolykondensation (→ P2). Zu einer Lsg. von 1,520 g P1 in 30 ml DMSO wurden bei RT. unter N₂ und gutem Rühren 170 mg (1,11 mmol) DBU und 230 mg (1,11 mmol) DCC gegeben (Viskositätserhöhung und leichte Trübung). Nach 24 h Rühren bei 50° wurde eingedampft, der Rückstand in 100 ml CHCl₃ gelöst und mit 0,1M HCl, dann mit 5% Na₂CO₃-Lsg. gewaschen. Nach dem Trocknen (MgSO₄) der org. Phase und Einengen auf 10 ml wurde das Polyamid durch Eintropfen in 250 ml Hexan/Aceton 1:1 ausgefällt. Man filtrierte, wusch den Rückstand mehrmals mit Aceton und MeOH und trocknete P2 48 h bei 80°/HV.: 1,443 g (95%). DTA: $T_g = 200^\circ$. Viskosimetrie: [η] = 1,20 ± 0,01 dl/g (CHCl₃), $K_H = 0,3 \pm 0,2$. Dichte (Film, 21°). $\rho = 1,359 \pm 0,005$ g/cm². IR (Film): 2978, 2937, 2876, 1635, 1480, 1430, 1386, 1331, 1274, 1185, 1142, 1104, 1062, 1044, 983, 947, 917, 868, 843, 806, 777, 731, 686, 635, 609, 483, 453, 411, 331. ¹H-NMR (CDCl₃): mit P1 identisches Spektrum. Keine Rückständ von Dicyclohexylharnstoff erkennbar. MO: $M_n = 47000 \pm 4000$ g/mol; $A_2 = 7,0 \cdot 10^4$ mol·ml/g². UZ: $M_w = 104000 \pm 10000$ g/mol; $M_z = 144000 \pm 15000$ g/mol.

Poly {{4-{{cis-4'-{}-{{-i', cis-2''', 6'''-dimethylpiperazin-1'''-yl}carbonyl}-1'', 2'', 5''-thiadiazol-3''-yl }carbonyl}-3',5'-dimethylpiperazin-1'-yl{carbonyl}-1,2,5-thiadiazol}-3-carbonyl-4'''-yl} (= Geordnetes Polyamid (s = 0,0); P3). Zu einer im Waring-Blendor mit 20000 rpm gerührten eisgekühlten Lsg. von 3,3046 g (7,52 mmol) 15 und 2,94 g (52,41 mmol) KOH in 40 ml H₂O wurde unter N₂ eine Lsg. von 1,5870 g (7,52 mmol) 4 in 8 ml CHCl₃ gegeben. Man rührte 15 min mit unveränderter Geschwindigkeit, danach 1 h mit 10000 rpm. Das org. Lsgm. wurde bei Normaldruck abdestilliert, wobei P3 ausfiel. Man wusch das körnige Produkt mehrmals mit H₂O, MeOH und Aceton und trocknete 48 h bei 100°/HV.: 3,15 g (83%). P3 wurde durch Umfällen, d. h. Lösen in wenig CHCl3 und Ausfällen durch Eintropfen in Hexan weiter gereinigt. DTA (15° /min): $T_{g} = 203^{\circ}$, $T_{Zers} = 400^{\circ}$ (beginnend, unter N₂). Viskosimetrie: $[\eta] = 0.52 \pm 0.01 \text{ dl/g}$ (CHCl₃), $K_{\text{H}} = 0.64 \pm 0.02$. Dichte (Film, 21°); $p = 1.367 \pm 0.005 \text{ g/cm}^2$. UV: 273,7 ± 0,5 (9510 ± 400). IR (Film; in Klammern Werte in KBr): 2975 (2974), 2933 (2928), 2876 (2880), 1637 (1637), 1483 (1487), 1390 (1388), 1353 (1352), 1315 (1312), 1276 (1271), 1242, 1221, 1180 (1180), 1155 (1154), 1122 (1122), 1079 (1080), 1043 (1044), 980 (980), 955 (955), 926 (925), 876 (875), 842 (842), 802 (800), 771 (764), 732 (732), 679, 654, 622 (622), 598, 559, 529 (530), 478, 445, 421, 331. ¹H-NMR (CDCl₃): 1,48 (br. s, 6 H, CH₃); 3,20, 3,59 (je m, je 1 H, CH₂); 3,93 (m, d schwach erkennbar, $J_{gem} = 12$), 4,51 u. 4,62 (je d, $J_{gem} = 12$, tot. 2 H, CH₂); 4,14, 144,28, 4,84, 5,01 (je m, CH, tot. 2 H). ¹³C-NMR (CDCl₃): 19,7 u. 20,9 (CH₃); 45,5 (ČH); 46,5 (CXH₂); 50,4 (CH, CH₂) 157,1 (Thiadiazol-C); 161,8 (C=O). MO: $M_n = 24500 \pm 1500$ g/mol, $P_n = 97 \pm 6$ abcc-Einheiten/mol; $A_2 = 2.4 \cdot 10^{-4} \text{ mol} \cdot \text{ml/g}^2$. LS: $M_w = 52\,300 \pm 5000 \text{ g/mol}$; $A_2 = 6.1 \cdot 10^5 \text{ mol} \cdot \text{ml/g}^2$. Röntgenweitwinkelbeugung (Pulver und Film): keine Kristallinitätsbanden erkennbar, Streumaximum: $2\theta = 17^{\circ}$, d = 5,2 Å. Anal. ber. für C₁₀H₁₂N₄O₂₈ (252,30): C 47,61, H 4,79, N 22,21; gef.: C 47,40, H 4,87, N 21,51.

Ungeordnetes Polyamid (s ≈ 0.5 , P4). Ansatz mit bzgl. Molekulargewicht und Ausbeute optimierten Bedingungen: Zu einer im Waring-Blendor mit 20000 rpm gerührten eisgekühlten Lsg. von 5,0367 g (44,11 mmol) 7 und 24,4 g (176,5 mmol) K₂CO₃ in 100 ml H₂O wurden unter N₂ eine Lsg. von 9,3076 g (44,11 mmol) 4 in 50 ml CHCl₃ innert 10 s zugegeben. Man rührte 20 min mit unveränderter Geschwindigkeit, danach 10 min mit 10000 rpm. Aus dem milchig weissen Gemisch destillierte man bei Normaldruck CHCl₃ ab, wobei P4 als körniges Produkt ausfiel und abfiltriert wurde. Man wusch mit H2O, Aceton und MeOH, gab den Rückstand in 250 ml H2O/MeOH 5:1 und erhitzte 14 h unter Rückfluss. Nach Filtration wurde P4 3 Tage bei 110° HV. getrocknet: 10,5 g (94%). P4 wurde analog P3 durch Umfällen noch weiter gereinigt. DTA: Tg = 195°; TZers. = 400° (beginnend, N2). Viskosimetrie: $[\eta] = 0.85 \pm 0.01 \text{ dl/g}$ (CHCl₃), $K_{\text{H}} = 0.54 \pm 0.02$; Grenzviskositätszahlen ([η]) und Huggins-Konstanten in anderen Lsgm. (25°): AcOH: $[\eta] = 0.83 \pm 0.01$ dl/g, $K_{\rm H} = 0.5 \pm 0.2$; CH₂Cl₂: $[\eta] = 0.62 \pm 0.01$ dl/g, $K_{\rm H} = 0.3 \pm 0.2$; N-Methylpyrrolidon: $[\eta] = 0.70 \pm 0.01$ dl/g, $K_{\rm H} = 0.2 \pm 0.2$. Löslichkeit: löslich in CH₂Cl₂, CHCl₃, 1,1,2,2-Tetrachloroethan, DMSO, DMF, N.N-Dimethylacetamid, N-Methylpyrrolidon, HCOOH (Zers.), AcOH, Py und Benzylalkohol; teilw. löslich in Dioxan und Benzol; unlöslich in H₂O, Aceton, MeOH, CCl₄, THF und MeCN. Dichte (Film, 21°): $\rho = 1,355 \pm 0,005 \text{ g/cm}^2$. UV: 273,7 $\pm 0,5$ (9200 ± 400). IR (Film): 2977, 2935, 2876, 1643, 1486, 1421, 1389, 1353, 1317, 1273, 1180, 1155, 1123, 1080, 1044, 981, 955, 927, 876, 842, 812, 773, 734, 701, 655, 623, 528, 478, 448, 419. ¹H-NMR (CDCl₃): 1,48 (br. s, 6 H, CH₃); 3,20, 3,59 (je m, je 1 H, CH₂); 3,96, 4,52 u. 4,63 (je *m*, schwach erkennbar ist *d*, $J_{gem} = 12$, tot. 2 H, CH₂); 4,13, 4,29, 4,84, 5,01 (je *m*, tot. 2 H, CH). ¹³C-NMR (CDCl₃, 18 s Relaxations-'delay'): 19,7, 20,8 (tot. 2 C, CH₃); 45,5 (1 C, CH); 46,3, 46,5 (tot. 1 C, CH₂); 50,4, 50,6 (tot. 2 C, CH, CH₂); 155,8, 158,4 (tot. 0,92 C, Thiadiazol-C: KS-Strukturen); 157,1 (1,08 C, Thiadiazol-C: KKSS-Strukturen); 161,8, 162,0 (tot. 2 C, C=O). MO: $M_n = 48\,000 \pm 3000$ g/mol, $P_n = 190 \pm 12$ abcc-Einheiten/ mol; $A_2 = 4,3 \cdot 10^{-3} \text{ mol} \cdot \text{ml/g}^2$. LS: $M_w = 95000 \pm 10000 \text{ g/mol}$, $A_2 = 1,8 \cdot 10^{-4} \text{ mol} \cdot \text{ml/g}^2$. Röntgenweitwinkelbeugung (Pulver und Film): keine Kristallinitätsbanden erkennbar, Streumaximum: $\Theta = 16^{\circ}, d = 5.5$ Å. Anal. ber. für C₁₀H₁₂N₄O₂S (252,30): C 47,61, H 4,79, N 22,21; gef.: C 47,43, H 4,82, N 21,33.

Wir danken Herrn Dr. G. Gianotti ganz herzlich für seine Anregungen, Herrn Prof. G. P. Lorenzi für seine Mitarbeit und konstruktive Kritik sowie dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung für die finanzielle Unterstützung dieser Arbeit.

LITERATURVERZEICHNIS

- [1] G. Xie, P. Pino, G.-P. Lorenzi, Macromolecules 1990, 23, 2583.
- [2] A. Mühlebach, Dissertation, ETH Nr. 8208, ETH-Zürich, 1987.
- [3] R. Deschenaux, P. Neuenschwander, P. Pino, Helv. Chim. Acta 1986, 69, 1349.
- [4] M.A. Schmucki, P. Pino, U.W. Suter, Macromolecules 1985, 18, 823.
- [5] A. Steinmann, U. W. Suter, P. Pino, Int. Symp. Macromol. Chem. Florence, Prepr. 1980, 2, 228.
- [6] G. Gianotti, Tecnopolim. Resine 1977, 6, 19.
- [7] A. Mühlebach, G. P. Lorenzi, V. Gramlich, Helv. Chim. Acta 1986, 69, 389.
- [8] T. Sasaki, J. Soc. Org. Synth. Chem. Jpn. 1959, 17, 17.
- [9] R. N. MacDonald, W. H. Sharkey, J. Polym. Sci., Polym. Chem. Ed. 1973, 11, 2519.
- [10] U. W. Suter, P. Pino, Macromolecules 1984, 17, 2248.
- [11] M.A. Schmucki, Dissertation, ETH Nr. 8229, ETH-Zürich, 1987.
- [12] H.K. Hall, J. Am. Chem. Soc. 1957, 79, 5439.
- [13] L. Moroder, A. Hallet, E. Würsch, O. Keller, G. Wersin, Z. Physiol. Chem. 1976, 357, 1651.
- [14] J. Kovacs, G. N. Schmit, U. R. Ghatak, Biopolymers 1968, 6, 817.
- [15] H.K. Lonsdale, in 'Desalination by Reverse Osmosis', Ed. U. Merten, MIT-Press, 1966, S. 137.
- [16] E. Staude, in 'Ullmanns Encyklopädie der technischen Chemie', Verlag Chemie, Weinheim, 1972, Bd. 16, S. 515ff.
- [17] P. Hilty, Dissertation, ETH Nr. 5734, ETH-Zürich, 1976, S. 18ff.
- [18] T. Graham, Philos. Mag. 1866, 32, 401.
- [19] D. D. Perrin, W. L. F. Armarego, D. R. Perrin, 'Purification of Laboratory Chemicals', 2. Aufl., Pergamon Press, Oxford, 1980.
- [20] A. Ruf, mündliche Mitteilungen und Vorlesungsmanuskript 'Membrantrenntechnik', Institut für Verfahrensund Kältetechnik der ETH, Zürich, 1984.
- [21] 'CRC Handbook of Chemistry and Physics', 57. Aufl., 1977.